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Abstract The existence of global error bound for convex inclusion problems is
discussed in this paper, including pointwise global error bound and uniform global
error bound. The existence of uniform global error bound has been carefully studied
in Burke and Tseng (SIAM J. Optim. 6(2), 265–282, 1996) which unifies and extends
many existing results. Our results on the uniform global error bound (see Theorem 3.2)
generalize Theorem 9 in Burke and Tseng (1996) by weakening the constraint qual-
ification and by widening the varying range of the parameter. As an application, the
existence of global error bound for convex multifunctions is also discussed.

Keywords Error bound · Convex inclusion · Convex multifunction

1 Introduction

The study on the existence of error bound is fruitful and has been developed in various
directions by applying the theory of convex analysis and nonsmooth analysis, such as
[3,4,6,8,11,13]. In this paper, we discuss the existence of global error bound for the
solution set of the following convex inclusion problem:

Ax − b ∈ K, (1)

where A is a continuous linear mapping from a normed linear space X to R
m, b ∈ R

m

a parameter, and K ⊂ R
m is a closed convex set. The problem (1) is said to have global

error bound if there exists τb > 0 (depending on the parameter b) such that

dist(x, Sb) ≤ τb dist(Ax, K), for all x ∈ X, (2)
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where Sb := {x ∈ X : Ax − b ∈ K} is the solution set of (1) and dist denotes the
distance function induced by the norm.

In the setting of finite dimensional spaces, Hoffman [5] proved that if K is a
polyhedral convex set then (1) has global error bound. This result was extended to
infinite dimensional Banach spaces by Ioffe [7]. When K is not necessarily a polyhe-
dral set, additional assumptions are needed to ensure the existence of global error
bound. Reference [10] presented some equivalent characterizations on the existence
of global error bound in terms of the subdifferential of the distance function from
Ax − b to K. Reference [1] proved that if

A(X) + K∞ = R
m, (3)

where K∞ denotes the recession cone of K, then global error bound (2) holds uni-
formly for all points b in the relative interior of A(X) − K, that is, τb is independent
on b (see Theorem 9 therein). In this paper, we generalize Theorem 9 in Ref. [1] by
weakening the constraint qualification condition (3) and by verifying that global error
bound holds uniformly for all b ∈ A(X) − K; see Theorem 3.2. As an application, we
address the existence of global error bound for convex multifunctions.

2 Preliminaries

For a normed linear space X, we use ‖·‖ to denote the norm on X, use B to denote the
closed unit ball in X, use X∗ to denote the dual space of X, and use 〈·, ·〉 to denote the
pairing between X and X∗. For any nonempty closed convex set K ⊂ X, we denote
by σK the support function of K:

σK(x∗) := sup
x∈K

〈
x∗, x

〉
, ∀ x∗ ∈ X∗,

K− := {x∗ ∈ X∗ : σK(x∗) ≤ 0}, and K⊥ := {x∗ ∈ X∗ : 〈x∗, x〉 = 0, ∀ x ∈ K}. We use
K∞ and barr(K) to denote the recession cone and the barrier cone of K, respectively,
i.e.,

K∞ := {d ∈ X : d + K ⊂ K} and barr(K) := {x∗ ∈ X∗ : σK(x∗) < ∞}.
It is known that (K∞)− is the closure of barr(K) in the weak* topology. For any convex
function f : X → R ∪ {+∞}, we use epi f to denote the epigraph of f and use f ∗ to
denote the conjugate of f , i.e.,

epi f := {(x, r) ∈ X × R : f (x) ≤ r} and f ∗(x∗) := sup
x∈X

{〈x∗, x
〉 − f (x)}.

For any continuous linear mapping A from X to R
m, we denote by A∗: R

m → X∗ the
adjoint of A and by ker(A∗) the kernel of A∗. For each nonempty set D in a finite
dimensional space, D denotes the closure of D.

3 Error bound for convex inclusions

The following minimum norm duality theorem is well known; see [9,Theorem 5.13.1]
and [14,Theorem 3.8.2] for its proof.
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Lemma 3.1 Let K be a nonempty convex set in a normed linear space X. Then

dist(x, K) = max
‖x∗‖≤1

{〈
x∗, x

〉 − σK(x∗)
}

, for all x ∈ X.

Since every finite dimensional normed linear space is locally compact, the following
lemma is an immediate consequence of Corollary 3.4 in Ref. [2].

Lemma 3.2 Let T be a continuous linear mapping from a finite dimensional normed
linear space Z to a linear topological space and let K be a nonempty closed convex set
in Z. If ker(T) ∩ K∞ is a linear subspace of Z, then T(K) is closed.

Proposition 3.1 Suppose that A is a continuous linear mapping from a normed linear
space X to R

m, K is a closed convex set in R
m, and S := A−1(K) is nonempty. If

ker(A∗) ∩ K− is a linear subspace, then σS = A∗σK, where (A∗σK)(x∗) := inf{σK(y∗) :
A∗y∗ = x∗}.
Proof Since IS(x) = (IK ◦ A)(x), in view of Theorem 2.3.1 (ix) in Ref. [14], we obtain
that (A∗σK)∗(x) = (σK)∗(Ax) = IK(Ax) = IS(x). Since σS is the conjugate func-
tion of IS, it follows that σS is the weak* closure of A∗σK. It remains to prove that
epi(A∗σK) is weak* closed. Let B : R

m ×R → X∗ × R be a linear mapping defined by
B(y∗, r) = (A∗y∗, r). Then it is easy to prove that

B(epi σK) ⊂ epi(A∗σK) ⊂ cl∗ B(epi σK), (4)

where cl∗ denotes the weak* closure.
Now we prove that B(epi σK) is weak* closed. It can be seen that epi(σK) is a weak*

closed convex cone and hence

ker(B) ∩ (epi σK)∞ = ker(B) ∩ epi σK = (ker(A∗) × {0}) ∩ epi σK

= (ker(A∗) ∩ K−) × {0}.
Since ker(A∗) ∩ K− is a subspace, by virtue of Lemma 3.2, we obtain that B(epi σK) is
weak* closed.

It follows from (4) that epi(A∗σK) is weak* closed. ��
In what follows, some global error bound results will be proved.

Theorem 3.1 Suppose that A is a continuous linear mapping from a normed linear
space X to R

m, K is a closed convex set in R
m, and S := A−1(K) is nonempty. If

ker(A∗) ∩ barr(K) = ker(A∗) ∩ K⊥ (5)

then

dist(x, S) ≤ τ dist(Ax, K), for all x ∈ X,

where

τ := sup{‖y∗‖ : y∗ ∈ (A∗)−1(B) ∩ barr(K) ∩ T⊥} < ∞
and T := ker(A∗) ∩ K⊥.

Proof Since K⊥ ⊂ K− ⊂ barr(K),

T = ker(A∗) ∩ K⊥ ⊂ ker(A∗) ∩ K− ⊂ ker(A∗) ∩ barr(K).
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This together with (5) implies that all the inclusions are equalities, so ker(A∗) ∩ K− is
equal to T and is a linear subspace. It follows from Proposition 3.1 that

σS(x∗) = inf{σK(y∗) : A∗y∗ = x∗}.
This together with Lemma 3.1 yields that

dist(x, S) = max
‖x∗‖≤1

{〈x∗, x
〉 + sup

A∗y∗=x∗
−σK(y∗)}

= max
‖x∗‖≤1

sup
A∗y∗=x∗

{〈x∗, x
〉 − σK(y∗)}

= max
‖x∗‖≤1

sup
A∗y∗=x∗

{〈y∗, Ax
〉 − σK(y∗)}

= sup{〈y∗, Ax
〉 − σK(y∗) : y∗ ∈ (A∗)−1(B) ∩ barr(K)}

≤ sup{〈y∗, Ax
〉 − σK(y∗) : y∗ ∈ (A∗)−1(B) ∩ barr(K)}. (6)

Since the recession cone of (A∗)−1(B) ∩ barr(K) is equal to ker(A∗) ∩ barr(K) which is
the linear subspace T ≡ ker(A∗) ∩ K⊥ in view of (5), we have

(A∗)−1(B) ∩ barr(K) = (A∗)−1(B) ∩ barr(K) ∩ T⊥ + T. (7)

Since the recession cone of the set (A∗)−1(B) ∩ barr(K) ∩ T⊥ is the set ker(A∗) ∩
barr(K)∩T⊥ which is equal to T ∩T⊥ = {0}, we have the set (A∗)−1(B)∩barr(K)∩T⊥
is a bounded closed convex set. By the definition of τ , τ < ∞ and

(A∗)−1(B) ∩ barr(K) ∩ T⊥ ⊂ τB.

In view of (7),

(A∗)−1(B) ∩ barr(K) ⊂ τB + T.

It follows from (6) that

dist(x, S) ≤ sup{〈y∗, Ax
〉 − σK(y∗) : y∗ ∈ (A∗)−1(B) ∩ barr(K)}

≤ sup{〈y∗, Ax
〉 − σK(y∗) : y∗ ∈ τB + T}

= sup{〈u∗ + v∗, Ax
〉 − σK(u∗ + v∗) : u∗ ∈ τB, v∗ ∈ T}

= sup{〈u∗, Ax
〉 − σK(u∗) : u∗ ∈ τB}

= τ sup{〈u∗, Ax
〉 − σK(u∗) : u∗ ∈ B}

= τ dist(Ax, K),

where the last equality follows from Lemma 3.1. ��

Remark 3.1 In the proof of the above theorem, we show that the closed convex set
(A∗)−1(B) ∩ barr(K) ∩ T⊥ is bounded. Therefore, Corollaries 18.5.1 and 32.3.1 in
Ref. [12] imply that the supremum in the definition of τ is actually attained at some
extreme point of the set (A∗)−1(B) ∩ barr(K) ∩ T⊥.

Corollary 3.1 Theorem 3.1 holds if the condition (5) is replaced by the following one:

ker(A∗) ∩ barr(K) = ker(A∗) ∩ (K − K)⊥.
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Proof Since S = A−1(K) is nonempty, let x0 ∈ X be such that Ax0 ∈ K. Set b0 := Ax0
and K0 := K − b0. Then barr(K) = barr(K0) and (K0)

⊥ = (K − K)⊥. Hence the
condition (5) in Theorem 3.1 is satisfied with K replaced by K0. Moreover, S0 :=
A−1(K0) = S − x0 is nonempty as so is S. Taking τ as defined in Theorem 3.1 and
applying Theorem 3.1, one has

dist(y + x0, S) = dist(y, S0) ≤ τ dist(Ay, K0) = τ dist(A(y + x0), K), ∀y ∈ X.

For every x ∈ X, taking y = x − x0, we obtain that

dist(x, S) ≤ τ dist(Ax, K).

This completes the proof. ��
Theorem 3.2 Suppose that A is a continuous linear mapping from a normed linear
space X to R

m and K is a closed convex set in R
m. If

ker(A∗) ∩ barr(K) = ker(A∗) ∩ (K − K)⊥ ≡ L (8)

then for all b ∈ A(X) − K,

dist(x, Sb) ≤ γ dist(Ax − b, K) for all x ∈ X,

where Sb := A−1(K + b) and

γ := sup{‖y∗‖ : y∗ ∈ (A∗)−1(B) ∩ barr(K) ∩ L⊥} < ∞.

Proof With the set K in Corollary 3.1 replaced by K + b, the conclusion follows
immediately from Corollary 3.1. ��
Remark 3.2 In Theorem 3.2, the constant γ is independent on b.

Corollary 3.2 Besides those assumptions in Theorem 3.2, if K is a closed convex cone
and

ker(A∗) ∩ K− = ker(A∗) ∩ K⊥ (9)

then for every b ∈ A(X) − K,

dist(x, Sb) ≤ γ dist(Ax − b, K) for all x ∈ X,

where γ := sup{‖y∗‖ : y∗ ∈ (A∗)−1(B) ∩ K− ∩ L⊥} < ∞ and L = ker(A∗) ∩ K⊥.

Proof Since K is a closed convex cone, barr(K) = K− and (K − K)⊥ = K⊥. The
former implies that barr(K) = barr(K). Thus, the assumption (9) implies that (8) is
satisfied, and hence the conclusion follows from Theorem 3.2. ��

The following result is a corollary of Theorem 3.2 and improves Theorem 9 in
Ref. [1].

Corollary 3.3 Suppose that

A(X) + K∞ = R
m . (10)

Then γ := sup{‖y∗‖ : y∗ ∈ (A∗)−1(B) ∩ barr(K)} < ∞ and for all b ∈ A(X) − K,

dist(x, Sb) ≤ γ dist(Ax − b, K) for all x ∈ X. (11)
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Proof Since (K∞)− = barr(K), (10) implies that ker(A∗) ∩ barr(K) = {0}. Since (K −
K)⊥ ⊂ barr(K), it follows that

0 ∈ ker(A∗) ∩ (K − K)⊥ ⊂ ker(A∗) ∩ barr(K) = {0}.
Therefore ker(A∗) ∩ barr(K) = ker(A∗) ∩ (K − K)⊥ = {0}, i.e., (8) holds. In view of
Theorem 3.2, for all b ∈ A(X) − K,

dist(x, Sb) ≤ γ1 dist(Ax − b, K) for all x ∈ X,

where γ1 := sup{‖y∗‖ : y∗ ∈ (A∗)−1(B) ∩ barr(K)}.
Since the origin belongs to barr(K) and is an interior point of (A∗)−1(B), it follows

from Exercise 1.4 in Ref. [14] that

(A∗)−1(B) ∩ barr(K) = (A∗)−1(B) ∩ barr(K) = (A∗)−1(B) ∩ barr(K).

So γ1 := sup{‖y∗‖ : y∗ ∈ (A∗)−1(B) ∩ barr(K)}. By virtue of the continuity of the norm,
we obtain that γ = γ1. ��
Remark 3.3 The main difference between Theorem 9 in Ref. [1] and Corollary 3.3 is
that the former verified that global error bound (11) holds for those b in the relative
interior of A(X) − K, while the latter verifies (11) holds for all b ∈ A(X) − K. Under
the assumption (10), the scalar γ defined in Corollary 3.3 is equal to the scalar µ5
defined in Ref. [1, p. 281]. In fact, (10) implies that ker(A∗) ∩ barr(K) = {0}, so the set
W3 defined in Ref. [1] is equal to barr(K). This shows that γ = µ5.

We present an example to show that Theorem 9 in Ref. [1] is not applicable while
Theorem 3.2 is applicable.

Example 3.1 Let X = R
3, K := {y ∈ R

3 : y1 > 0, y1y2 ≥ 1, y3 = 0}, and A(z) is the
projector of z ∈ X onto the subspace {x ∈ R

3 : x3 = 0}. Then ker(A∗) = {y ∈ R
3 : y1 =

0 = y2}, barr(K) = {y ∈ R
3 : y1 ≤ 0, y2 ≤ 0}, and (K − K)⊥ = {y ∈ R

3 : y1 = y2 = 0}.
Therefore

ker(A∗) ∩ barr(K) = {0} × {0} × R = ker(A∗) ∩ (K − K)⊥,

that is, (8) holds and hence Theorem 3.2 is applicable.
But the conditions of Ref. [1,Theorem 9] are not satisfied, because neither K is a

polyhedral convex set nor A(X) + K∞ = R
m.

Recall that γ is the constant in the conclusion of Theorem 3.2. By calculation, if we
assume R

3 with the �2-norm, then

γ = 1 = sup
x �∈Sb

dist(x, Sb)

dist(Ax − b, K)
, for every b ∈ A(X) − K,

that is to say, in this example, γ is the smallest constant such that the conclusion of
Theorem 3.2 holds. However, it is not known whether this observation is true for
general problems.

4 Applications to convex multifunctions

Let �: R
n ⇒ R

m be a multifunction. We use Gr(�) and dom(�):= {x ∈ R
n : �(x) �= ∅}

to denote the graph and the domain of �, respectively. For each y ∈ R
m, �−1(y) :=
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{x ∈ R
n : y ∈ �(x)} denotes the preimage of y. � is said to be a closed convex mul-

tifunction if its graph Gr(�) is a closed convex subset of R
n × R

m. As suggested in
Ref. [15], �∞ is used to denote the multifunction whose graph is the recession cone
of Gr(�).

Theorem 4.1 Suppose that � : R
n ⇒ R

m is a closed convex multifunction. If x0 ∈
dom(�) and

(dom(�∞))− = (dom(�) − x0)
⊥ (12)

then there exists τ > 0 such that

dist(y, �(x0)) ≤ τ dist(x0, �−1(y)) for all y ∈ R
m . (13)

Proof Let K := Gr(�) − (x0, 0) and define A: R
m → R

n × R
m by Ay := (0, y). Then

�(x0) = A−1(K) and A∗ : R
n × R

m → R
m maps every (x∗, y∗) ∈ R

n × R
m to y∗,

because

〈
A∗(x∗, y∗), y

〉 = 〈
(x∗, y∗), Ay

〉 = 〈
(x∗, y∗), (0, y)

〉 = 〈
y∗, y

〉
, ∀ y ∈ R

m .

Therefore ker(A∗) = R
n ×{0}. We claim that ker(A∗) ∩ barr(K) = ker(A∗) ∩ K⊥, that

is,

(Rn ×{0}) ∩ barr (Gr(�) − (x0, 0)) = (Rn ×{0}) ∩ (Gr(�) − (x0, 0))⊥. (14)

Granting this, by Theorem 3.1, we have for some τ > 0,

dist(y, �(x0)) = dist(y, A−1(K)) ≤ τ dist(Ay, K) = τ dist((x0, y), Gr(�))

≤ τ dist
(
(x0, y), �−1(y) × {y}

)
= τ dist(x0, �−1(y)),

where the second inequality holds because �−1(y)×{y} ⊂ Gr(�) and where the norm
on R

n × R
m is the sum of the norm on R

n and the norm on R
m.

Now we prove that (14) holds. It suffices to prove that

(Rn ×{0}) ∩ barr(Gr(�)) ⊂ (Rn ×{0}) ∩ (Gr(�) − (x0, 0))⊥. (15)

Let (x∗, y∗) belong to the left hand side of the above expression. Then y∗ = 0 and
(x∗, 0) ∈ barr(Gr(�)). Since (Gr(�)∞)− = barr(Gr(�)), (x∗, 0) ∈ (Gr(�)∞)−. It follows
from the definition of the multifunction �∞ that (x∗, 0) ∈ (Gr(�∞))−, which implies
that x∗ ∈ (dom(�∞))−. In view of (12), x∗ ∈ (dom(�) − x0)

⊥. Therefore, for every
(x, y) ∈ Gr(�),

〈
(x∗, y∗), (x, y) − (x0, 0)

〉 = 〈
(x∗, 0), (x, y) − (x0, 0)

〉 = 〈
x∗, x − x0

〉 = 0,

i.e., (x∗, y∗) ∈ (Gr(�) − (x0, 0))⊥. This verifies (15). ��
Acknowledgments The author is grateful to the referees for valuable suggestions. One of them
pointed out an incorrect usage of a property of recession cone in the previous version of this paper.
This work was partially supported by Natural Science Foundation of China, Sichuan Youth Science
and Technology Foundation (06ZQ026-013), and SZD0406 from Sichuan Province.



426 J Glob Optim (2007) 39:419–426

References

1. Burke, J.V., Tseng, P.: A unified analysis of Hoffman’s bound via Fenchel duality. SIAM J.
Optim. 6(2), 265–282 (1996)

2. Gwinner, J.: Closed images of convex multivalued mappings in linear topological spaces with
applications. J. Math. Anal. Appl. 60(1), 75–86 (1977)

3. He, Y.R., Sun, J.: Error bounds for degenerate cone inclusion problems. Math. Oper.
Res. 32(3), 701–717 (2005)

4. He, Y.R., Sun, J.: Second order sufficient conditions for error bounds in Banach spaces. SIAM J.
Optim. 17(3), 795–805 (2006)

5. Hoffman, A.J.: On approximate solutions of systems of linear inequalities. J. Res. Nat. Bur.
Stand. 49, 263–265 (1952)

6. Huang, L.R., Ng, K.F.: On first- and second-order conditions for error bounds. SIAM J. Op-
tim. 14, 1057–1073 (2004)

7. Ioffe, A.D.: Regular points of Lipschitz functions. Trans. Am. Math. Soc. 251, 61–69 (1979)
8. Lewis, A.S., Pang, J.-S.: Error bounds for convex inequality systems. In: Crouzeix, J.-P.,

Martinez-Legaz, J.-E. , Volle, M. (eds.) Generalized Convexity, Generalized Monotonicity:
Recent Results., pp. 75–110. Kluwer, Dordrecht (1998)

9. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)
10. Ng, K.F., Yang, W.H.: Error bounds for abstract linear inequality systems. SIAM J. Op-

tim. 13(1), 24–43 (2002)
11. Ng, K.F., Zheng, X.Y.: Global error bounds with fractional exponents. Math. Program. Ser.

B 88(2), 357–370 (2000)
12. Rockafellar R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970)
13. Wu, Z., Ye, J.J.: On error bounds for lower semicontinuous functions. Math. Program. Ser.

A 92(2), 301–314 (2002)
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